If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=5H^2+40H
We move all terms to the left:
-(5H^2+40H)=0
We get rid of parentheses
-5H^2-40H=0
a = -5; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·(-5)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*-5}=\frac{0}{-10} =0 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*-5}=\frac{80}{-10} =-8 $
| 2/3x-9=5x-12 | | 3x^2+8x+1=1 | | t-208=6t-8 | | 14x^2/5x=0 | | 12m+6=18m | | -8p-9=p-306 | | (3q+24)^1/4+6=3 | | X+3/12=7/6+x-1/3 | | x/x-2+1/x/x-2=34/15 | | 2/t+6=3/t+1 | | 3x+1/4=x+8/8+x-6/8 | | 16/2+22=x | | 2/3n-6=n | | x/x-2+1/x-2/x=34/15 | | -8(x+1)=4(-11) | | 5/4=−4c+1/4 | | 5/4=−4c+41/4 | | 3/3x-4/3x=1 | | (t+5)(t-12)=0 | | b−15=4 | | .45x=27 | | 1/4c+2/3=1/3 | | 6(x+8)=-3(x+43) | | 10x-13=x²+12 | | 4=y/5.12 | | 3t+1/4=t+5/8+t-3/8 | | 1/3y=72 | | 1/4x-1/8=-7/8+1/2x | | 2(x+3)=18 | | 5x-4(-3x+5=-3 | | v2+2v-15=0 | | 8(w+3)-5w=39 |